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Abstract
The ‘topology’ of a protein native structure refers to the pattern of non-
covalent contacts among its amino acid residues. Diverse folding rates of
natural small single-domain proteins are known to correlate well with simple
parameters derived from these patterns. Here we extend our investigation of
possible physical underpinning of this remarkable topology–rate relationship
by applying continuum Gō-like Cα Langevin modelling to 13 small proteins.
Folding rates simulated at transition mid-points are well correlated with �D,
a ‘topomer search model’ (TSM) parameter which equals the number of
nonlocal contacts in a protein’s native structure. This modelling success in
mimicking experimental topology–rate relationships is largely a conformational
entropic effect: while transition states are results of large entropy–energy
compensations, the trend of variation of the activation free energy �G‡ versus
�D in the model is dominated by �G‡’s entropic component. Interestingly, the
activation conformational entropy �S‡ is well correlated (negatively) with the
Boltzmann-averaged number of nonlocal contacts �

‡
D in the putative transition

state ensemble. Thus, for the present Gō-like explicit-chain models, �D’s
ability to predict rates is rooted in its correlation with �

‡
D. However, the model

transition states are much more diffuse than that postulated by TSM because
�

‡
D is significantly smaller than �D.

1. Introduction

Important reasons abound for studying the kinetics of protein folding and unfolding. In
conjunction with thermodynamic measurements, kinetic data provide crucial clues for
understanding how the physico-chemical driving forces, molecular dynamics and solvation
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Figure 1. Definitions of contact orders and local and nonlocal contacts, using the native structure
of the N-terminal domain of the protein L9 as an illustration. Amino acid residues are numbered
consecutively along the chain sequence; contact order is defined to be |i − j | for a contact between
residues i and j . Among the many contacts in the structure shown in the figure, two are marked by
dashed lines. A contact is local if it is made between amino acid residues close to each other along
the chain sequence (i.e., low contact order, as for l1). A contact is nonlocal if it is made between
amino acid residues far apart along the chain sequence (i.e., high contact order, as for l2).

effects lead to the emergence of a protein’s native structure from its disordered unfolded
conformations; and how disease-causing misfolding may occur. One intriguing puzzle
confronting researchers of protein folding/unfolding kinetics has been the great diversity of
folding rates observed for different proteins. In 1998, a key empirical advance that holds
tremendous promise for shedding light on the physical origin of this phenomenon was made
by Plaxco, Simons and Baker. They discovered that a simple parameter termed the relative
contact order (CO), which is readily computable from the atomic coordinates of the native
structure of a protein, can predict the folding rates of small single-domain ‘two-state’ proteins
to within about one to two orders of magnitude [1]. The relative precision achieved by this
empirical correlation is remarkable in view of the fact that the range of folding rates of such
proteins varies over at least six orders of magnitude (from µs−1 to s−1) [2]. By virtue of its
fundamental nature, this finding of Plaxco et al presents an opportunity as well as a challenge
to theoretical investigations [3], especially for ‘big-picture’ approaches that utilize simplified
or so-called minimalist modelling [4–8].

1.1. Meanings of ‘topology’

Plaxco et al use the term ‘topology’ for a protein’s fold pattern as defined by its set of native
contacts, i.e., pairs of amino acid residues that are in close spatial proximity in the native
structure. Accordingly, the CO parameter is seen as a measure of ‘topological complexity’ [1].
Since the definition of topology is not uniform in the broad areas of biomolecular research
covered in this special issue, a few words on the background of its present usage are in order.
The terminologies of ‘topological neighbour’ and ‘contact order’ were introduced to the study
of proteins in the late 1980s (figure 1). In that context, a pair of residues are called ‘topological
neighbours’ to distinguish them from ‘connected neighbours’: topological neighbours are
not covalently bonded along the chain sequence but are nonetheless spatially close to each
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other in a given chain conformation [9]. The term topology is thus associated with non-
covalent intraprotein contacts. This focus on contact patterns and the application of related
ideas to lattice models at that time [10] have led to the hypothesis that compactness of chain
conformation is a major driving force for the preponderance of secondary structure (helices
and sheets) in proteins [11] as well as in crystals of synthetic polymers [12]. The viability
of this early lattice model deduction is supported by more recent results from an elegant tube
model formulation [13, 14],2 although it has since been recognized that factors other than
chain compactness alone—hydrogen bonding for example—have to be considered to account
for the particular forms of secondary structure in real proteins [14–16]. Therefore, inasmuch
as topology is used (as in the present work) to refer to contact patterns such as secondary
structure in proteins, topology can be changed by conformational transitions without breaking
any covalent bond. Consequently, while this meaning of topology is akin to that in the usage
of the same term to describe RNA structural motifs such as pseudoknots [17], its meaning is
significantly different from that of the topology of knots and links in DNA [18–20] or in the
analyses of possible knotting and catenation in proteins [21–23].

1.2. Topological parameters in protein folding

Since the seminal work of Plaxco et al [1], several other topology-based parameters (topology
as defined above by intraprotein native contacts) have been proposed. They have similar
abilities to predict folding rates (kf ). These include long range order (LRO) [24], total contact
distance [25], ‘cliquishness’ [26], local secondary structure content [27] and the topomer
search model parameter �D [28]. All of these parameters show good empirical correlation
with the logarithm of the experimental folding rates (ln kexp

f ). More recently, instead of using
known native structures as starting points, direct predictions of kf from sequence information
alone have also been attempted. This is achieved by combining the proven predictive power
of some of the topological parameters with bioinformatic algorithms for predicting secondary
structure [29] and nonlocal contacts (see figure 1) [30] from amino acid sequences.

Although the success of these parameters in rate prediction hints at a certain simplicity in
protein folding processes [31], it has proven nontrivial to devise a plausible physical picture
that rationalizes the observed topology–rate relationship through an explicit account of the
protein’s intrachain interactions and conformational freedom. This difficulty notwithstanding,
several theoretical treatments that do not consider explicit-chain representations have had
remarkable successes in producing topology–rate relationships that are quantitatively similar
to that observed experimentally [32–35]. These results are encouraging; but their physical
implications have yet to be better elucidated by incorporation of their key modelling
assumptions in self-contained, explicit-chain polymer models [36, 37]. In this regard, the
topomer search model (TSM) [28, 38–40], at least in its current form, also belongs to this
class of non-explicit-chain constructs. Similar to earlier non-explicit-chain treatments, TSM
produces a good correlation between its topological parameter and logarithmic folding rate,
indicating that the essential physics of folding must have been captured by this approach.
However, the physical picture offered so far by the mechanistic interpretation of TSM is
problematic [41, 42]. In particular, an explicit-chain analysis has raised fundamental concerns
about the TSM assertion that the rate-limiting step in the folding of small single-domain
proteins is an essentially unbiased search for the native topomer state [41].

2 Self-avoiding walks on simple cubic lattices automatically satisfy the constraints on local and nonlocal triplets
required in the tube model [18, 109]. HSC is indebted to Professor Micheletti for making this insightful observation
during their discussion in a CECAM workshop held in May 2002 in Lyon, France.
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1.3. Explicit-chain modelling and transition states

For models that use explicit representations of the protein chain to directly simulate folding
kinetics, the goal of producing a set of kf s that adequately captures the experimental trend
of topology–rate correlation has been more elusive [43–45]. Nonetheless, several recent
findings are noteworthy [46–50]. These advances include recognizing the pivotal role of
thermodynamic and kinetic cooperativity in the topology–rate correlation among two-state
proteins [8, 46, 47], and the discovery that certain many-body interactions [47, 49] such as
local–nonlocal coupling [8, 47] can significantly improve a model’s topology–rate relationship
toward better agreement with experimental behaviour. Furthermore, a recent study of common
native-centric chain models has provided intriguing evidence that correlation between model
and real folding rates may be stronger if both the simulated and experimental rates are
determined at their respective transition mid-point temperatures [48]. Taken together, these
results have reinforced our expectation that simplified chain models can go a long way toward
deciphering the physical basis of topology-dependent protein folding.

A key to physical understanding of the topology–rate correlation is to elucidate the
relationship between various topological parameters and the rate-limiting step, or the transition
state, in the folding process [51–56]. As local native contacts tend to speed up folding [1, 3],
it has long been recognized that conformational entropy must be a dominant factor in the
emergence of topology-dependent folding rates [1]. Pursuing this reasoning, Bai et al
have studied the relationship between the ‘total contact distance’ [25] topological parameter
and the ‘size’ of the folding transition state (critical nucleus) in a recent non-explicit-chain
treatment [57]. Also, the effect of native topology on the breadth of the conformational space
sampled by a folding protein, as characterized by a ‘route measure’, has been explored in the
explicit-chain investigation of Chavez et al [48]. However, the impact of native topology on
the conformational entropy of the transition state has not been clearly delineated. The present
work uses explicit-chain modelling to address this critical issue.

As a first step in this endeavour, we construct native-centric Cα models to simulate the
folding of a set of small single-domain proteins. Simplified, coarse-grained modelling is
used here because currently even the most extensive atomic simulations [58–60] are far from
providing sufficient and computationally efficient conformational coverage to address many
equilibrium and long timescale kinetic properties of interest. The goals of our investigation
are the following: (i) determine the conformational properties of the folding transition
states in these model proteins; (ii) dissect the free energy folding barrier into entropic and
enthalpic components; (iii) explore the interplay of intrachain interactions and conformational
entropy [61] and the role of entropy–energy compensation in setting the height of folding
barriers; and (iv) evaluate the relationship between the entropic component of the folding free
energy barrier and several native topological parameters including relative contact order (CO),
long range order (LRO) and the TSM �D.

2. Model and methods

The explicit-chain model in this investigation follows from that introduced several years ago
by Clementi et al [62], a coarse-grained approach that has since been used for the study of
many different proteins (see, e.g., [43, 63]). The model is based on a simplified version of
the protein chain, with each amino acid residue represented by its Cα position. The model
interaction scheme is native-centric, or Gō-like [64–66], in that the potential function is not
based on physico-chemical principles that are general for all proteins but rather designs a
different energy function for each different protein, so as to bias the chain conformations



Native topology and conformational entropic barriers in protein folding S311

towards the protein’s known native structure. Somewhat surprisingly, despite the teleological
nature of such constructs [67], they have offered many physical insights that otherwise would
not have been straightforward to discern. (A discussion of the biophysical justifications and
limitations of Gō-like models can be found on pages 912 and 913 of [63].)

The potential energy function of the present model is given by

E =
∑

bonds

Kr (bi − bn
i )

2 +
∑

angles

Kθ (θi − θn
i )2

+
∑

dihedrals

{K (1)
φ [1 − cos(φi − φn

i )] + K (3)
φ [1 − cos 3(φi − φn

i )]}

+
native∑

i< j−3

ε

[
5

(
rn

i j

ri j

)12

− 6

(
rn

i j

ri j

)10]
+

non−native∑

i< j−3

ε

(
rrep

ri j

)12

, (1)

where bi , θi , φi and ri j are, respectively, the virtual bond lengths, bond angles, torsion angles
and Cα–Cα distance between residues i and j , and bn

i , θn
i , φn

i and rn
i j are the corresponding

native values provided by the PDB structure of the given protein.
As before, the summation of the second-last term in the above equation is over contacts that

belong to the native contact set of the given protein. Here we adopt the criterion that a pair of
amino acid residues is part of the native contact set if and only if any two non-hydrogen atoms
(these include atoms in the sidechains),one from each of the two amino acid residues,are within
4.5 Å in the PDB native structure. This definition is the same as that used by Chavez et al [48]
(but is not exactly identical to that in several previous studies [43, 49, 62, 63, 66, 68–70]), and
can apparently lead to well-behaved model behaviours such as bimodal free energy profiles.
The native contact sets so defined are used to determine the topological parameters CO, LRO
and �D for the model proteins. As will be discussed further below, native contacts with contact
orders lower than a certain nonlocality cut-off lc are excluded from the computation of LRO and
�D. In this work, the contact order of each native contact appears only once in the summation
expression for CO [1]. In other words, every native contact contributes equally in that they
are not weighted by the number of atomic contacts between the two contacting residues (cf
equations (1) and (2) of [71]). This convention is adopted here to allow for the generalization
of the CO measure to non-native conformations in the present Cα model. In general, for any
conformation, a native contact is taken to exist between residues i and j if the pair belongs to
the native contact set and ri j < 1.2rn

i j [41, 63]. We use ε = 1 in the present study. The values

of the parameters Kr , Kθ , K (1)
φ , K (3)

φ and rrep in equation (1) are identical to those in [63].
Kinetic properties of Gō-like protein models with potentials similar to that in equation (1)

have been studied by Newtonian mechanics in the absence of solvent frictional effects [43, 62],
whereby velocity rescaling [72] was used to maintain a constant simulation temperature. Here,
following our previous approach, frictional forces are considered. To this end, simulation of
folding kinetics and thermodynamic sampling are performed using Langevin dynamics [73],
with time evolution governed by the equation

mv̇(t) = Fconf − mγ v(t) + η(t), (2)

where m, v, v̇, Fconf , γ and η are, respectively, mass, velocity, acceleration, conformational
force, friction (viscosity) and the random force. Units are chosen such that m = 1; Fconf

is the negative gradient of the potential energy function in equation (1); and η is drawn
from a Gaussian distribution, the variance of which is determined by the temperature of the
system (see equation (3) in [63]). As in previous studies from our group [63], equation (2)
is integrated using the velocity Verlet algorithm [73–75], with a time step δt = 0.02 and a
friction coefficient γ = 0.0125. This choice of γ is motivated by the modelling requirement for
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computational tractability, as this relatively small value of γ allows for efficient simulations of
folding/unfolding kinetics. The resulting dynamics is underdamped, however3. It corresponds
to the low friction case of Veitshans et al [73], with an effective solvent viscosity much
lower than that expected of real water (see pages 20 and 21 of [73]). In using this model,
our assumption is that, aside from a different timescale, the general trends obtained from
the present Langevin set-up are applicable to situations with more realistic solvent effects.
In view of present computational limitations, this approach is useful for making advances.
Nonetheless, it should be recognized that many aspects of this assumption remain to be tested,
as the relationship between results from explicit-solvent and low and high friction implicit-
solvent simulations can be rather complex [76].

For real proteins, the effective solvent-mediated intrachain interactions are temperature
dependent. Consequently, folding rates are generally non-Arrhenius [77–79] and the entropic
component of the free energy barrier to folding contains not only conformational contributions
but also entropic effects of the solvent-mediated interactions. It is possible to construct
explicit-chain models for such experimental behaviours [80–82], including the phenomenon
of enthalpic folding barriers which we have recently proposed to be a likely consequence
of cooperative desolvation effects [83–86]. Here we choose to keep the model interaction
potential in equation (1) temperature independent. As the focus of the present investigation
is on the role of conformational entropy in topology-dependent folding, this choice serves to
simplify the modelling logic as it ensures that all entropic contributions are attributable to
conformational effects.

3. Apparent two-state proteins

The attention of the present effort is on small, single-domain proteins. Kinetic and equilibrium
experiments have indicated that many such proteins fold in a ‘two-state’ manner [2]. This
means that the folding of these proteins—when viewed macroscopically—may be seen as
proceeding more or less directly from the unfolded (or denatured) state, D, to the native
state, N, with minimal or essentially non-existent accumulation of intermediate conformational
population during the process. About 30 such single-domain proteins have been identified [87]
since chymotrypsin inhibitor 2 (2ci2) was first demonstrated in 1991 to exhibit apparent two-
state behaviour [88]. We focus here on a set of 13 such proteins (table 1).

4. Experimental versus theoretical folding rates

We begin our analysis by ascertaining the extent to which the native-centric polymer model
described above is able to reproduce experimental folding rates. In general, it has been
noted that the behaviour of the present class of Gō-like models are more two-state-like near
each model’s folding/unfolding transition mid-point, Tm [48, 101]. These observations are
consistent with previous findings from our group that although the folding behaviour of these
models satisfies thermodynamic and kinetic two-state criteria at temperatures close to Tm,
there are substantial deviations from kinetic two-state cooperativity at other temperatures as
manifested by significant chevron rollovers [63, 102]. For these reasons, only folding rates
simulated at the Tms of the model proteins are considered in this study.

Figure 2 compares simulated and experimental folding rates (all experimental folding
rates used in this paper are in units of s−1). The folding statistics for each model protein is

3 This may be illustrated by a test simulation of one of the model proteins studied here (see section 3). Using the
present Langevin parameters, we find that the average values of |mγ v| and |Fconf + η| for one of the Cα positions far
from either chain end are 0.0099 and 9.1, respectively, indicating that damping is much weaker compared to the force
exerted on the given position.
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Figure 2. Folding rates for 13 proteins obtained from simulations of the present native-centric
Cα model (ln ksim

f ) are compared against the corresponding experimental folding rates measured
at temperatures close to 25 ◦C in the absence of denaturant (data from table 1). In this and all
subsequent scatter plots in this paper, r is the Pearson correlation coefficient, and straight lines are
least-square linear fits to the data points.

Table 1. Data for the 13 proteins studied in this work. PDB id: Protein Data Bank accession code;
N : number of amino acids; kf : experimental folding rate in water (zero denaturant) determined at
temperature Texp [88–100]. The data for 1psf are from [87]; Texp for 1psf is not available from this
reference.

Protein PDB id N kf (s−1) Texp (◦C)

Acylphosphatase 1aps 98 2.3 × 10−1 28
Chymotrypsin inhibitor 2 2ci2 64 4.8 × 101 25
Spliceosomal protein U1A 1urn 96 3.2 × 102 25
λ-repressor 1lmb 80 4.9 × 103 25
SH3-domain (fyn) 1shf 59 9.0 × 101 20
Protein G 1pgb 56 4.0 × 102 22
Twitchin 1wit 93 1.5 × 100 20
CspB (Bacillus subtilis) 1csp 67 1.1 × 103 25
S6 1ris 97 3.7 × 102 25
Photosystem I accessory protein 1psf 69 2.5 × 101 —
N-terminal domain from L9 1div 56 4.5 × 102 19
Coicilin E9 immunity protein 1imq 59 9.0 × 101 10
His-containing phosphocarrier protein 1poh 85 1.5 × 101 20

obtained from 109 time steps of Langevin dynamics simulation after a short thermalization
period. The number of unfolding/folding events recorded for the different proteins varies from
42 for the slowest-folding model protein to 4979 for the fastest-folding model protein. At the
mid-point temperature Tm, the folding rate kf is equal to the unfolding rate ku, and kinetic
relaxation is well approximated by a single exponential (figure 11(a) of [63]). This allows
kf to be calculated as the inverse of the mean first passage time (MFPT) from the denatured
state to the native state, as well as vice versa, during the simulation; i.e., kf = (MFPT)−1.
Recent investigations using similar models and numbers of trajectories indicate that sampling
errors for MFPTs obtained by this procedure are small [85, 86]. In the present calculation,
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Figure 3. Free energy profiles G(Q)/kBTm = − ln P(Q), where kB is the Boltzmann constant
(set to unity in the present units), P(Q) is the probability distribution of the fraction Q of native
contacts formed. The profiles shown are for the proteins 1imq and 1wit (see table 1) at their
respective model Tms. The Q-width of each grey band is 0.05. They indicate the conformational
spaces that we have used to define the denatured or unfolded (low Q), transition (intermediate Q)
and native or folded (high Q) states.

we use the definitions of denatured (D, unfolded) and native (N, folded) states as defined in
figure 3. Each of the free energy profiles in figure 3 shows a single barrier separating the
denatured state (low Q minimum) and the native state (high Q minimum), indicating that
the models behave roughly as two-state systems at their transition mid-point temperatures.
All of the other 11 model proteins in our set exhibit similar bimodal free energy versus Q
profiles. The match between the general trends for the simulated and experimental rates in
figure 2 is reasonable (correlation coefficient = 0.69). However, the simulated rates span only
approximately two orders of magnitude; thus they are much less diverse than the corresponding
experimental rates that cover more than four orders of magnitude. Quite remarkably, the level
of correlation obtained here between simulated and experimental folding rates is the same as
that reported earlier by Koga and Takada [43]. They also computed folding rates at model Tms
(with simulated rates of 18 proteins spanning approximately 1.5 order of magnitude), but the
set of proteins that they studied and their modelling set-up are not identical to ours.

At least two sets of ideas—which are not necessarily mutually exclusive—have been put
forward to address this mismatch in folding rate diversity between experiments and explicit-
chain model predictions. First, it has been pointed out that a probable culprit is the failure of
many forms of Gō-like models to embody a sufficiently high degree of cooperativity [8, 46] to
mimic real two-state proteins [63, 86]. Indeed, consistent with this general assessment, a local–
nonlocal coupling lattice model interaction scheme that enhances cooperativity has been shown
to also significantly increase the diversity in model folding rates [47]. But this local–nonlocal
coupling principle has yet to be evaluated in off-lattice continuum contexts. Interestingly,
a more recent study of a class of Gō-like chain models with three-body interactions as a
‘perturbation’ shows that such non-pairwise, many-body effects can significantly increase the
range of model folding rates (some are deduced from thermodynamic considerations, some
from direct kinetic simulations), and enhance the correlation between model and experimental
rates [49]. Considered as a whole, these findings suggest strongly that cooperativity and
non-additive many-body interactions are likely to be critical in accounting for the tremendous
diversity among experimental folding rates.

Second, it should be noted that the experimental folding rates used in the present
comparison are measured at temperatures close to T = 25 ◦C and at zero denaturant
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concentration. Ideally, however, since the theoretical rates are simulated at model Tm (this
choice is somewhat obligated by the limitations of common Gō models, as discussed above),
it would appear more appropriate to compare these theoretical rates with real rates measured at
the experimental Tm [48]. Unfortunately, currently those data are not available for a significant
fraction of known two-state proteins, including some of the 13 proteins modelled here. In lieu
of actual experimental Tm rate data for many of the proteins that they considered, Chavez
et al [48] proposed a method for extracting a ‘representative’ folding rate of a protein from
the folding rate data for its single-point mutants. For the set of two-state proteins that they
considered, a remarkably high correlation (r = 0.92) between model and ‘representative’
rates was reported. But this method does not alleviate the problem of limited diversity among
simulated rates. To address that, Chavez et al postulated an additional procedure for rescaling
the simulated folding rates. The resulting rescaled rates were then shown to exhibit a diversity
comparable to that of the experimental rates. However, while these new procedures appear
promising, further analysis is required, as many pertinent issues remain to be better elucidated.
Accordingly, we will comment briefly on their method for obtaining ‘representative’ rates in
section 8.

5. Free energy barriers to folding: entropic and enthalpic components

We now direct our effort toward understanding the basis for topology–rate correlation in
figure 2, and leave further elucidation of model rate diversity to future investigations. The
correlation between experimental and simulated folding rates in figure 2 is not extremely
high. Nonetheless, the very existence of a reasonable correlation—in conjunction with
the established good correlation between native topology and experimental folding rate—
implies that the present model is at least embodying part of the physics that underlies the
experimentally observed topology–rate relationship. Hence, it is instructive to ask: what are
the essential features of this explicit-chain model that allow it to capture this aspect of the
folding of real proteins? To address this question, we focus on the properties of the rate-
limiting folding transition state in the model. Understanding this state is important because
for real proteins some of its properties are experimentally accessible through methods such as
protein engineering and φ-value analysis [103].

Here we adopt a simple definition of the folding transition state. We define the transition
state ensemble (TSE), similarly to how the D and N states are defined above for MFPT
calculations, as the set of conformations having Q-values within a small region around the
local maximum along the free energy profile G(Q) between the D and N states [54, 55, 62],
as illustrated in figure 3. A possibly more rigorous definition of TSE is via the quantity
pfold, the probability that a conformation reaches N before D, by identifying TSE with the set
of conformations with pfold = 1/2 [52, 56, 104]. The present Q-based definition does not
guarantee that all conformations in our TSE have pfold = 1/2. In that sense, our TSEs are
putative, though the relationship between pfold and rate-limiting events remains to be better
elucidated. In this regard, it is clear that our TSE must be in large measure representative of the
true rate-limiting step in the model, as it produces very good predictions of model folding rate
at the transition mid-point. Figure 4 shows that the model folding rates are, up to a constant
overall factor, almost completely determined by the height of the folding free energy barrier
(i.e. activation free energy) �G‡ computed using the values of G‡ and GD which are readily
read off from each of the 13 model proteins’ free energy profile G(Q) (cf figure 3). This
is consistent with a lattice model observation that kinetic progress on a Q-based profile is
quasi-continuous, and thus the thermodynamic Q-based free energy peak also amounts to a
kinetic bottleneck (cf figure 2 of [55]). Similarly strong correlations between Q-based �G‡
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free energy barrier to folding �G‡ = G‡ − GD at the Tms of the model proteins, where ‡ and D
indicate, respectively, the transition state and denatured state.

and Gō-like model folding rate at Tm have also been reported before [48, 86]. Thus, these
models’ behaviour at Tm is apparently well described by Kramer’s classic theory [105] which
predicts a rate ∝ exp(−�G‡/kBT ). In other words, despite the obvious multi-dimensional
character of the models’ energy landscapes, a single one-dimensional parameter Q is able to
capture a significant part of the rate-determining factors of the folding process.

To ascertain more specifically the role of conformational entropy in determining the folding
rate, we dissect the free energy profile into its energetic and entropy components, namely,

G(Q) = 〈E〉Q − T S(Q) (3)

where 〈E〉Q is the average energy (referred to simply as the energy when the contextual meaning
is clear) and S(Q) is the entropy of the model protein, as functions of Q. The quantity 〈E〉Q

is readily computed by collecting averages of the value taken by the potential energy function
E in equation (1) from subsets of simulated conformations with different given Qs. Since
G(Q) is already known (up to an arbitrary additive constant), the 〈E〉Q computation also
determines the entropy S(Q). The activation energy �E‡ and activation entropy �S‡ can then
be calculated as the differences, respectively, of the 〈E〉Q and S(Q) values at the �G‡-defined
transition state minus that for the D state.

Figure 5 shows how �E‡ and �S‡ vary across the 13 model proteins. Not surprisingly, the
results indicate large entropy–energy compensations. A large loss in conformational entropy
(and thus a large increase in entropic free energy) is expected as folding proceeds (the value
of the progress variable Q increases) because the chain conformations are becoming more
compact. This is accompanied by a large decrease in energy because the compactifying chains
are forming a larger number of favourable contacts. For instance, the slowest-folding model
protein in figure 5 involves �E‡ and �S‡ of similarly large magnitudes of ∼70 kBT ; but
the net �G‡ value after compensation is only ∼6 kBT . The logarithmic model folding rate
ln ksim

f correlates well with both �E‡ and �S‡, although these correlations are less strong than
that between ln ksim

f and �G‡. Most interestingly, figure 5 shows that the trend of topology-
dependent folding rate (which is governed by �G‡; cf figures 2 and 4) is consistent with
�S‡ but opposite to that of �E‡. In other words, the sign of the slope of variation of �G‡
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Figure 5. Activation free energy (�G‡), activation energy (�E‡ = 〈E〉‡ − 〈E〉D) and activation
entropy (�S‡ = S‡ − SD) at the Tms of the 13 model proteins in this study. The strong correlation
between ln ksim

f and −�S‡ (r = −0.88) and the even stronger correlation between ln ksim
f and

�G‡/Tm (r = −0.98, cf figure 4) are significant because the probabilities that they have arisen
from pure chance are very small. By scrambling the order of the 13 data points multiple times
and recalculating the resulting correlation coefficients, we have determined that the probabilities
of randomly achieving a correlation coefficient greater than or equal to the observed r values are
less than 10−4 and 10−7, respectively, for ln ksim

f versus −�S‡ and ln ksim
f versus �G‡/Tm.

with respect to ln ksim
f is identical to that of the entropic component, −T �S‡, of �G‡, but is

opposite to that of the energetic component, �E‡, of �G‡. In this very sense, the topology–
rate relationship, at least in the present model, is dominated by a conformational entropic
effect. This suggests a folding process in which the search for the transition state is driven by
favourable energetic interactions but the transition states of slow- and fast-folding proteins are
associated, respectively, with low and high conformational entropies. Indeed, this conclusion
is conceptually similar to the one advanced recently by Bai et al [57], although these authors
did not use an explicit-chain approach in their investigation.

Figure 6 takes a closer look at the entropy–energy compensation phenomenon, using two
model proteins as examples4. The upper panels of this figure show that large entropy–energy
compensations are operative over the entire folding energy landscape, as the variations of
〈E〉Q/kBT and S(Q)/kB over Q follow almost the same trend. The dependences of 〈E〉Q/kBT
and S(Q)/kB on Q are not linear; nonetheless, the general trends of their slope are very similar.

4 Among the proteins considered here, 1imq is the second fastest experimentally, and fourth fastest in our model;
whereas 1wit is second slowest experimentally, and third slowest in our model. Model free energy profiles of the
faster-folding 1lmb and slower-folding 1aps have been presented elsewhere [41].



S318 S Wallin and H S Chan

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1
Q

1imq 1wit

〈CO〉Q

〈CO〉Q

∆<E>Q/kBTm ∆<E>Q/kBTm

∆S(Q)/kB ∆S(Q)/kB

<E>Q/kBTm <E>Q/kBTm

S(Q)/kB S(Q)/kB

 0

 0.1

 0.2

 0.3

 0.4

 0  0.2  0.4  0.6  0.8  1
Q

1imq 1wit

〈CO〉Q

〈CO〉Q

∆<E>Q/kBTm ∆<E>Q/kBTm

∆S(Q)/kB ∆S(Q)/kB

<E>Q/kBTm <E>Q/kBTm

S(Q)/kB S(Q)/kB

-10

-5

 0

 5

1imq 1wit

〈CO〉Q

〈CO〉Q

∆<E>Q/kBTm ∆<E>Q/kBTm

∆S(Q)/kB ∆S(Q)/kB

<E>Q/kBTm <E>Q/kBTm

S(Q)/kB S(Q)/kB

-10

-5

 0

 5

1imq 1wit

〈CO〉Q

〈CO〉Q

∆<E>Q/kBTm ∆<E>Q/kBTm

∆S(Q)/kB ∆S(Q)/kB

<E>Q/kBTm <E>Q/kBTm

S(Q)/kB S(Q)/kB

-100

-50

 0

 50

 100

 150

 200

1imq 1wit

〈CO〉Q

〈CO〉Q

∆<E>Q/kBTm ∆<E>Q/kBTm

∆S(Q)/kB ∆S(Q)/kB

<E>Q/kBTm <E>Q/kBTm

S(Q)/kB S(Q)/kB

-100

-50

 0

 50

 100

 150

 200

1imq 1wit

〈CO〉Q

〈CO〉Q

∆<E>Q/kBTm ∆<E>Q/kBTm

∆S(Q)/kB ∆S(Q)/kB

<E>Q/kBTm <E>Q/kBTm

S(Q)/kB S(Q)/kB

Figure 6. Entropy–energy compensation at Tm along the progress variable Q of a relatively fast-
folding (1imq, left panels) and a relatively slow-folding (1wit, right panels) model protein. For
each model protein, the shaded vertical bands mark (from left to right) the denatured, transition and
native states, as in figure 3. Top panels: entropy (S(Q), thick dotted curves) and energy (〈E〉Q ,
thick solid curves) as functions of Q, in the units shown. The thin dotted line (difficult to discern
for 1wit) is a fitted straight-line approximation of the variation of 〈E〉Q with respect to Q. Middle
panels: �〈E〉Q and �S(Q) are, respectively, the deviations of the actual simulated S(Q) and 〈E〉Q

values (as plotted as thick curves in the top panels) from the straight-line approximations (given by
the thin dotted curves in the top panels). Subtractions of the energy and entropy curves in the upper,
as well as the middle, panels result precisely in the two free energy profiles in figure 3. Bottom
panels: the variation of the average value of relative contact order CO with respect to Q; 〈CO〉Q is
calculated by averaging over conformations with the given Q.

However, this entropy–energy compensation is not perfect. If the compensation were perfect,
G(Q) would be a constant and there would not be a free energy barrier to folding. The
middle panels of figure 6 quantify this imperfection. The results indicate that entropy–energy
compensation is less effective for the slower-folding model protein. More specifically, for
the slower-folding protein with higher native state topological complexity (as characterized
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by a larger �D, for example), the decrease in energy that accompanies the gain in favourable
interaction at the transition state is less capable of compensating for the concomitant loss in
conformational entropy than that for the faster-folding protein. This is evident from the larger
separation between the �〈E〉Q/kBTm and �S(Q)/kB curves around the transition region at
intermediate Q for 1wit than for 1imq in the middle panels of figure 6.

6. Characterizing transition states with simple topological parameters

To gain further insight into possible origins of topology-dependent folding, we extend the
analysis of topological properties to all conformations and all Q values, as discussed in
section 2, instead of restricting such considerations to just the Q = 1 native structure. In
this way, �D, LRO and CO may be treated as observables in the model. These parameters
are all constructed to capture, in somewhat different ways, the ‘locality’ of the contacts in the
native structure (figure 1). The relative contact order CO [1] is the average sequence separation
of the native contacts divided by the total number of amino acid residues in the protein,

CO = 1

N M

∑

i j

li j (4)

where the sum is over all native contacts i j . Here N is the chain length, M is the total number
of native contacts and the sequence separation li j of contact i j is the number of amino acid
residues along the chain sequence between residues i and j (see section 2 and figure 1). The
correlation between native CO values and the simulated folding rates of the 13 proteins studied
here is reasonably good (r = −0.59; detailed data not shown), though it is somewhat lower
than the correlation between CO and the experimental folding rate,e.g., the r = −0.75 reported
by Ivankov et al for a larger set of proteins [87].

The bottom panels of figure 6 show the variation of CO along the Q-based free energy
profile. They show a monotonic increase in 〈CO〉Q with Q. This trend is expected because
chain compactness and the number of intrachain contacts tend to increase with Q. For these
examples, the dependence on Q of CO is sigmoidal for the faster-folding 1imq but not for
the slower-folding 1wit. Further exploration of this feature is beyond the scope of the present
study, but it would be interesting to study its implication in future work.

The �D parameter [28] is the number of sequence-distant (nonlocal) contacts, where a
contact i j is defined as nonlocal if residues i and j are separated by at least lc residues, i.e.,
|i − j | > lc. The definition of long range order LRO, which was introduced [24] before �D,
differs from �D only by a normalization factor, i.e., LRO = �D/N , if both LRO and �D

are evaluated with the same sequence cut-off parameter lc. Values from 4 to 12 have been
suggested for this parameter [28]. We use lc = 12 because a maximum correlation between
LRO and the folding rate was observed using this cut-off in the original study of Selvaraj and
Gromiha [24], and the main correlation result of Makarov and Plaxco was also obtained using
lc = 12 [28].

Figure 7 shows the dependences of our explicit-model folding rates on LRO and �D. The
correlation between ln ksim

f and these two topological parameters is relatively good, with model
correlation coefficients r (see figure 7) similar to that obtained from experimental folding rates
(using different protein sets) for LRO (r = −0.78) [24] and for �D (r = −0.88) [28]5. Quite
remarkably, the correlation between ln ksim

f and �D is very strong (figure 7(c)), suggesting that
the present model system may be relatively well suited for exploring �D dependence, even

5 The correlation considered in [28] is between log(kf/�D) and �D. The degree of correlation so obtained is
essentially equal to that between ln ksim

f and �D because the negative correlation between �D and ln �D + �D ln a
for a = 0.86 [28, 41] is almost perfect, with r = −0.999 890, for example, for the set of 13 proteins in this study.
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Figure 7. Correlation relationships between the folding rate ksim
f of the present native-centric Cα

model simulated at Tm and the topological parameters LRO (b) and �D (c) computed for the native
structures of the 13 proteins in this study. (a) shows the correlation between LRO and �D for the
same set of proteins.

though the correlation between ln ksim
f and the logarithmic experimental folding rate ln kexp is

less strong (figure 2). Figure 7(a) highlights the high degree of similarity between LRO and
�D that follows from the definitions of these parameters (see above).

Figures 8–10 explores the relationship between native topology and the topological
properties of the transition state, as well as the role of the latter in determining folding
rates. In particular, we seek to better understand how native and transition state topology
may affect the activation entropy �S‡. Conformational �S‡ is of central interest because its
contribution is dominant over that of the energetic contribution in predicting the correct sign of
the topology–rate trend in our model (figure 5). Furthermore, a significant degree of correlation
between �S‡ and the topology is expected because intrachain contacts are constraints on
conformational entropy [9, 10]. Here, the transition state topological parameters CO‡, LRO‡

and �
‡
D are computed by averaging the values taken by the CO, LRO and �D function over the

conformations in the interval of Q that defines the transition state ensemble. Several features
emerging from these results are noteworthy. First, the correlation is good between the native
topological parameters and their transition state counterparts (figures 8(a), 9(a) and 10(a)),
indicating that the transition states of the 13 model proteins share similar degrees of similarity
with their respective native states. Second, by virtue of this good correlation, the correlation
between native topology and folding rate and �G‡ (cf figure 4), at least in our model, may be
viewed as arising more fundamentally from the correlation between transition state topological
parameters and the folding rate. After all, transition state properties and activation quantities
are much more directly related to folding rates than native state properties.
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Third, the correlation between the activation entropy �S‡ and the native topological
parameters varies, depending on the parameter. The correlation is not so good for CO,
reasonable for LRO and quite high for �D (figures 8(c), 9(c) and 10(c)). Because �S‡ is
a property of the transition state, one intuitively expects a stronger correlation of this quantity
with CO‡, LRO‡ and �

‡
D than with their native counterparts. However, this is not the case

for the present model. Figures 8(b), 9(b) and 10(b) show the correlation between �S‡ and
the transition state topological parameters. The sign of the correlation is consistent with
expectation from polymer physics [9, 10], in that higher degrees of topological complexity
(higher CO‡, LRO‡ and �

‡
D values) are associated with lower conformational entropy (higher

−�S‡ values). But quantitatively these correlations are quite poor except that for �
‡
D. They

are also significantly weaker than that between �S‡ and the corresponding native topological
parameters, except again that for �

‡
D (r = 0.85) which is comparable to the correlation

between �S‡ and native �D (r = 0.88). These observations imply that the ability to capture
conformational entropic effects in folding varies for different topological parameters, and that
for the present model �D is enjoying a higher degree of success.

7. Transition state ensembles: explicit-chain model results disagree with topomer
search assumptions

The topological parameter �D is a central variable in the topomer search model [28]. Hence,
in view of the relative effectiveness of �D in folding rate correlation and in capturing essential
conformational entropic properties in the folding of the present set of model proteins, it is
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Figure 9. Same as figure 8, but for the transition state LRO‡ and native LRO.

instructive to compare the transition state ensembles postulated by the topomer search model
with the ones obtained in the present explicit-chain model. Such an exercise is particularly
valuable for addressing questions about conformational entropy, now that a dominant role
of conformational entropy is identified in our model. Conformational entropy plays an even
more critical role in the topomer search model, which postulates that the rate-limiting step of
folding is an essentially unbiased search for the native topomer. This state acts like a transition
state of the model, as it is asserted that folding will proceed quickly to the native state once
the native topomer has been located [28, 40]. Accordingly, the difference in conformational
entropy between the native topomer state and the denatured state is the determining factor for
the folding rate in the topomer search model.

However, despite the prominent roles of conformational entropy in both theoretical
pictures, the transition states predicted by the topomer search model and the present explicit-
chain model are far from similar [41]. Here, this fact is illustrated by the depiction in figure 11
of the transition state ensembles of the explicit-chain model and the native topomers for four
proteins, selected for a wide spread in their folding rates. The explicit-chain transition states
are much more diffuse than the native topomers, underscoring that the physics of the two
theoretical constructs are fundamentally different. Indeed, this trend was already evident from
figure 10(a), which shows that although �

‡
D is well correlated with �D, the range of �

‡
D

values is only about one third that of �D, implying that the number of nonlocal contacts in
the explicit-chain transition state is much smaller than that in the native topomer. Apparently,
the entropy–energy compensation in the explicit-chain model is conducive to transition states
with significant conformationaldiversity. The topomer search narrative, on the other hand, was
based on a Levinthal-like conformational search process that largely neglected the energetic



Native topology and conformational entropic barriers in protein folding S323

20

30

40

50

60

70

80

0 10 20 30 40 50 60 70

Λ‡
D ΛD

r = 0.95

r = 0.85 r = 0.88

0 50 100 150 200

Λ
D

0

50

100

150

200

–
∆S

‡
/k

B

(a)

(b) (c)

Figure 10. Same as figure 8, but for the transition state �
‡
D and native �D.

contribution. As we have recently discussed, such a folding mechanism is highly unlikely to
succeed [41].

8. Experimental folding rates: ‘representative’ rates from mutational analysis versus
actual mid-point rates

Finally, we comment briefly on a procedure recently proposed by Chavez et al [48] for
extracting an extrapolated zero-stability ‘representative’ folding rate for a given protein from
a large set of folding/unfolding rates of the wild-type protein’s single-point mutants. This
procedure was motivated by the wish to have a set of experimental folding rates determined
at each protein’s transition temperature Tm to compare with simulated rates at model Tms, as
discussed in section 4 above, but in many cases the actual folding rate at the heat-denatured
transition mid-point in the absence of denaturant has not been measured. The procedure entails
extrapolating folding and unfolding rates of a set of single-point mutants measured at a given
temperature with zero denaturant, as a function of their native stability �GH2O

U−F (Brønsted plot),
to a point at which �GH2O

U−F = 0. In this sense, the resulting extrapolated folding rate may be
viewed as that of a hypothetical mutant that populates the native and denatured states equally
at the given temperature in the absence of denaturant, similar to the behaviour of a protein at
its transition mid-point temperature. Chavez et al stipulate that the product of this procedure is
‘the most representative rate obtainable from experimental data for a given protein structure’
(supporting information for [48], page S3). In their analysis, these representative rates are used
on the same footing as actual experimentally determined rates at Tms to assess the agreement
between theory and experiment.
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Figure 11. Theoretical transition state ensembles of four of the proteins studied in this work:
(from left to right) 1div, 1pgb, 1imq and 1wit. Thick black traces depict the backbones of native
PDB structures; thin red traces show 25 representative transition state conformations optimally
superimposed on each native structure, constructed using the method in [41]. The transition state
ensembles postulated by the topomer search model (top row) are compared to that predicted by the
present explicit-chain native-centric model (bottom row).

Figure 12 shows the effects of applying this procedure to the data considered in this study.
For this purpose, our consideration is restricted to eight proteins that have also been treated by
Chavez et al. Interestingly, even before using the mid-point and representative rates, merely
restricting our data set of thirteen proteins to these eight proteins significantly improves the
correlation (from r = 0.69 to 0.88) between the simulated folding rates at model Tms and
experimental rates determined near room temperature. This can be attributed in large measure
to the fact that the protein 1urn, which is an outlier in figure 2, is not present in the restricted
set. When the mid-point and ‘representative’ rates are used, the correlation of the simulated
model Tm rates with the five experimentally determined mid-point rates and three extrapolated
representative rates improves slightly to r = 0.93, providing some—albeit not conclusive—
evidence that simulated Tm rates of the present model match better with experimental mid-point
rates than with rates measured near room temperature.

This consideration indicates that the Brønsted procedure of Chavez et al is promising.
However, several pertinent issues remain to be better elucidated. These include primarily
the physical, operational meaning of the representative rate, and its relationship with the
actual folding/unfolding rate at the transition mid-point temperature. Protein folding rates are
strongly temperature dependent [77–79, 85, 86]. Thus, the relationship between mutant folding
rates collected at one temperature and the folding rate of the wild-type protein measured at a
higher transition mid-point temperature can be rather complicated. The potential complexity
of these issues is highlighted by the comparison in figure 13, which shows a notable difference
between the actual folding rate of wild-type 2ci2 at its transition mid-point of 88 ◦C [78] and
the representative rate extrapolated from data collected at 25 ◦C. This observation means that,
in general, the representative rate may not be identified with the wild-type mid-point rate.
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Figure 12. Comparison between the theoretical folding rates of the present native-centric Cα

model, ln ksim
f , and two different sets of experimental or experimentally derived folding rates. The

set of proteins used in this comparison is the overlap of eight proteins (1aps, 2ci2, 1lmb, 1pgb,
1csp, 1div, 1imq and 1poh) between our data set and the set used by Chavez et al [48]. Open
squares denote the experimental folding rates near room temperature in table 1 (solid fitted line,
r = 0.88 for the ln ksim

f –ln kexp
f correlation). Filled circles denote either the mid-point temperature

(2ci2, 1lmb, 1csp, 1div and 1poh) or the ‘representative’ (1aps, 1pgb and 1imq) folding rates used
by Chavez et al [48] (dotted fitted line, r = 0.93).
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Figure 13. (a) Brønsted plot showing the folding (open squares) and unfolding (crosses) rates for
a set of 65 single-point mutants of the protein 2ci2, all measured at T = 25 ◦C and zero denaturant
concentration, as a function of their native stability �GH2O

U−F (data from [106]). The two linear fits

are close to converging at �GH2O
U−F = 0, at an extrapolated rate ln kexp

0 ≈ 1. (b) Actual experimental
temperature dependence of the folding rate ln kexp

f of wild-type 2ci2 as a function of native stability
(rate stability plot adapted from [85], original experimental data from [78, 88]). The mid-point
temperature folding rate is found at �GH2O

U−F = 0; this rate differs significantly from ln kexp
0 .

9. Concluding remarks and outlook

In summary, the main findings of our modelling exercise are as follows. The dominant role of
conformational entropic barrier in begetting the topology–rate relationship in the present class
of native-centric explicit-chain protein models suggests that similar conformational entropic
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effects may be at play in the topology-dependent folding of real proteins. For our models, we
find that the topomer search model parameter �D and its transition state counterpart �

‡
D are

particularly effective in capturing the pertinent conformational activation entropies. In this
light, it is likely that much remains to be learnt from the predictive power of these and the
related long range order parameters, even though the original physical interpretation of the �D

parameter [28] is problematic [41].
It has been pointed out that the success of a native topological parameter in folding rate

correlation, such as that of the original CO, does not by itself prove that the parameter is directly
related to the underlying folding mechanism, because the given parameter can be ‘a proxy for
some other, physically more reasonable parameter’ [28, 107]. In the context of the discussion in
which this possibility was raised, the ‘physically more reasonable parameter’ was envisioned
to be a differently defined topological variable for the native state [28, 107]. The present
investigation goes one step further. Our analysis makes it clear that, more fundamentally, all
native topological parameters may well be ‘proxies’ for certain rate-determining properties
of the transition state. For instance, �D may well be a proxy for �

‡
D, which in turn may be

viewed as a proxy for �S‡, etc.
As demonstrated by the results of our study, this generalization of the ‘proxy’ idea in

topology–rate relationship serves to open up new avenues for establishing physical connections
from the empirical native topological parameters to the actual folding process. However, more
in-depth analyses will be necessary to pin down the energetics that underlies the new statistical
correlations that we have observed. A focus on activation barriers to protein folding also
necessitates a better delineation of the role of the denatured states. In this regard, it would be
useful to compare the present approach with other explicit-chain methods, such as a recently
proposed ‘route measure’ [48], that also aim to address the kinetic effects of conformational
entropy. Although key advances have been made using the present class of coarse-grained
native-centric models, these constructs are limited in several important respects, leaving room
for improvement, for example, in their treatment of desolvation effects [63, 84, 108] and
enthalpic protein folding barriers [84–86]. Thus, inferences from these models for real proteins
should be considered tentative. It would be instructive to ascertain whether the application of
improved self-contained explicit-chain models that incorporate these features would lead to a
better mimicry of the experimental topology–rate trend.
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